Data Science Pro

  1. Creating a SAS Programs
  2. Submitting SAS Program
  3. Reading SAS Log
  4. Browsing the Data Portion
  5. Components of SAS Programs
  1.  Data from Excel/CSV
  2. Data from Text file
  1. List input
  2. Column input
  3. Formatted input
  4. Column Input
  5. Format Input
  6. Date and Time Input
  1. System Defined Formats
  2. User Defined Formats
  3. Numeric Formats
  4. Character Formats
  5. Date Formats
  6. Temporary Formats
  7. Permanents Formats
  8. Labeling of Variable Names
  1. Arithmetic Functions
  2. Character Functions
  3. Date Functions
  4. Subsetting a SAS Data Set
  5. Creating More Than One Subset Data Set in One DATA Step
  6. Adding Observations to a SAS Data Set
  1. Proc Append
  2. Proc Print
  3. Proc Contents
  4. Proc Means
  5. Proc Sort
  6. Proc Datasets
  7. Proc plot<>
  8. Proc Gplot
  9. Proc Chart
  10. Proc Gchart
  11. Proc Summary
  12. Proc Freq
  13. Proc Tabulate
  14. Proc Report
  15. Proc Univariate
    1. Do Loop Statement
    2. Nested Loop Statement
    3. Conditional Loop
    4. While and Until
    5. Leave &amp; Continue
  1. Simple Array
  2. Array with Dim Statement
  3. Lower and upper bound Arrary
  4. One Dimensional Array
  5. Two Dimensional Array
  1. Table Append using Data Steps
  2. Interleave
  3. Concatenation of Tables
  4. Inner Join using Data Steps
  5. Outer Join using Data Steps
  6. Full Join using Data Steps
  7. Anti Join using Data Steps
  1. Basic SQL Commands
  2. Case Statement
  3. Inner Join using SQL
  4. Full Joins using SQL
  5. Outer Join using SQL
  6. Anti Join using SQL
  7. SQL to create Macro Variable
  1. Rules to create Macro
  2. Compilation of program
  3. Creating Macro Variables
  4. Call Symput and call Symget Method
  5. Macro Functions
  6. Debugging Options
  7. Saving Macro Permanently

Introduction to R

  1. Introduction

  2. Installation of R Console

  3. Installation of R Studio

  4. Package Configuration

  5. System Configuration

  1. Vectors
  2. Matrices
  3. Dataframes
  4. Lists
  1. Numeric Functions
  2. Character Functions
  3. Date Functions
  4. User Defined Functions
  1. Computing New Variables
  2. Duplicate Values
  3. Sorting
  1. Labelling
  2. Numeric Formatting
  3. Character Formatting
  4. Date Formatting
  1. Merge
  2. Append
  1. If-else statements
  2. For Loops
  3. While Loops
  4. Repeat, Next, Break
  1. Scatterplots, Histograms, Barcharts, Dotplots
  2. Labels, Legends, Titles, Axes

Introduction

  1. Application of Machine Learning

  2. Installation of Python

  3. Introduction of Python

  1. Control Flow
    1. If-THEN-ELSE
    2. Loop with For and While
    3. Break and Continue Statement
    4. Range () Function
  2. Function
    1. User Defined
    2. System Defined
  3. Data Structures
    1. Linear Structure
    2. Qeue, Stack and Deque Interfaces
    3. List, Uset and SSet Interfaces
    4. Tuples & Ranges
    5. Strings
  4. Classes
    1. Names and Objects
    2. Scopes and Namespaces
    3. Classes and Variables
    4. Odds and Ends
  5. Exceptional Handling
    1. File Handling
    2. File Operations
    3. Dealing with Errors
    4. Importing Modules
  1. Numpy
  2. Sckit-learn
  3. Panda
  4. NLTK
  5. PILLOW
  6. Scrapy
  7. Matplotlib
  1. Import Datasets and Modules
  2. Create and Import Python Modules
  1. Data Cleansing
  2. Variable Transformation
  3. Expoloratory Data Analysis
  4. Plotting the Graphs
  1. Descriptive Statistics
  2. Hypothesis
  3. Ttest
    1. One Sample T-Test
    2. Two Sample T-test
    3. Paired T-Test
  4. Anova
    1. One Way Anova
    2. Two Way Anova
    3. Multivariate Anova
  5. Chi-Square
  6. Correlation
  7. Interpreation of Statistical Results
  1. Introduction
  2. Calculations, Equation and Assumptions
  3. Area of Application and Technique
  4. Validation Techniques
  5. Interpretation
  6. Training and Testing the Model
  1. Introduction
  2. Assumptions
  3. Area of Application and Methods
  4. Diagnostics
  5. Validation Methods
  6. Interpretation
  7. Training and Testing the Model
  1. Introduction
  2. Area of Application and Methods
  3. Hierarchal Clustering
  4. K-Means Clustering
  5. Segmentation of Clusters
  6. Interpretation of Outputs
  7. Validation
  1. Introduction
  2. Components
  3. Area of Applications
  4. Moving Average Methods
  5. Exponential Smoothing Method
  6. Holt Winter Method
  7. Box-Jenkins Method
  8. ARIMA
  9. Interpretation of Outputs
  10. Validation
  1. Introduction of Machine Learning and Components
  2. Supervised and Unsupervised Methods
  3. Sampling Techniques in Machine Learning
  4. Multi fold Validation Technique
  5. Bagging and Boosting Methods
  6. Ensemble Techniques
  7. Random Forest with Interpretation of Outputs
  8. Gradient Boosting Machines with Interpretation of Outputs
  9. XGBoost with Interpretation of Outputs
  1. Introduction
  2. Different Layers of Neural Network
  3. Multi Layers Neural Network
  4. Regression Problem
  5. Classification Problem
  6. Fine Tuning of Hyper Parameters
  7. Interpretation of Outputs
  8. Validation
  1. Introduction
  2. Regression Problem
  3. Setting of Hyper Parameters
  4. Interpretation of Outputs
  5. Validation
Course Detail
Fees:
Rs 35,000

 

Class Mode:
Classroom/Online

 

Duration:
5 Months

 

Course Contents:
Data Science with SAS, R & Python

 

Course Benefits:
Student will able to learn R-Programing, SAS and Python.

 

RS 35,000

4 Months

Data Science with R

Data Science with SAS & R Programming

RS 35,000

4 Months

Data Science with using Python

Data Science with SAS, R, Python

KEY FEATURES

5 Months of Classroom Training.

 

Session have assignments and daily task.

 

Recorded Videos and presentation for reference.

Books and related data sets in form of excel and csv.

 

Interview Questions for related topic.

 

Used Case Study and Projects to understand real scenarios.

CHOOSE YOUR COURSE

APPLY TO OUR CERTIFICATION COURSES NOW

Data
Science

Machine
Learning

Artificial
Intelligence

Python
Programming

R
Programming

Data
Visualization